为了满足大涵道比、抗分层、高损伤容限等需求,航空发动机风扇叶片逐渐采用机织复合材料。然而,风扇叶片的外廓尺寸具有大扭曲的几何形态,在复合材料结构纤维预制体赋形过程中,纤维间会发生挤压、错动、扭转等相互作用,使得经纬纱线截面形态、体积含量和走向轨迹呈现不规则分布,这种复合材料细观结构的高度非均匀性极易引起材料内部应力集中,导致损伤发生,降低结构的可靠性,同时也大大增加了复合材料结构力学性能分析与评价的难度。
近期,我院梁军教授、葛敬冉副教授课题组基于数字单元法和仿射变换提出了一种能够真实反映机织复合材料扭曲结构内部细观纱线形态的高效数字化建模方法,并基于细观尺度模型预测了复合材料扭曲结构在悬臂载荷下的力学响应。该研究成果以“Mesoscale modeling of woven composite twisted structures combining digital element embedded model and affine transform”为题发表于期刊《Composites Science and Technology》。
在本研究中,首先基于数字单元法和嵌入单元法模拟生成了三维机织织物的压实及扭转织物单胞模型,并利用Alpha-shapes算法和数字单元链追踪法准确提取了纱线的路径及截面信息。进而结合仿射变换几何重构出了机织复合材料扭曲结构内部细观纱线的实体几何模型,重构出的扭曲结构高保真模型的细观几何形态(纱线尺寸、纱线形状、纱线路径和间距)与Micro-CT结果基本一致。在细观高保真模型的基础上,将扭曲异形结构的局部细观特征信息通过几何坐标映射到宏观有限元模型上,准确预报了扭曲异形结构的力学行为,并揭示了扭转角对结构力学性能的影响规律,即复合材料扭曲结构的刚度性能随扭曲角度增大呈指数增强。本研究提出的机织复合材料异形结构数字化分析方法可为航空发动机风扇叶片的早期设计和制备提供理论支持。
图1 机织复合材料扭曲异形结构数字化建模示意图
图2 高保真模型与Micro-CT图像对比结果
图3 机织复合材料扭曲异形结构力学性能评价
原文链接:https://doi.org/10.1016/j.compscitech.2024.110504.
梁军教授、葛敬冉副教授课题组前期围绕三维机织复合材料及其结构的力学行为开展了系列研究工作,相关成果如下:
[1]. Jingran Ge, Chunwang He*, Jun Liang*, Yanfei Chen, Daining Fang. A coupled elastic-plastic damage model for the mechanical behavior of three-dimensional (3D) braided composites[J]. Composites Science and Technology, 2018, 157:86-98.
[2]. Xinyu Hu, Chunwang He*, Jingran Ge*, Qi Zhang, Jun Liang. Progressive damage and failure analysis of three-dimensional braided composites under multiaxial loadings[J]. International Journal of Solids and Structures, 2022, 254-255:111853.
[3]. Zengfei Liu, Jingran Ge, Kai Liu*, Mengran Li, Binbin Zhang, Hongyue Wang, Jian Huang, Jun Liang*. High-fidelity modeling of 3D woven composites considering inhomogeneous intra-yarn fiber volume fractions[J]. Composite Structures, 2022, 290:115505.
[4]. Mengran Li, Kai Liu*, Jingran Ge, Junbo Xie, Zengfei Liu, Binbin Zhang, Jian Huang, Jun Liang*. A novel modeling method for the mechanical behavior of 3D woven fabrics considering yarn distortion[J]. Composites Science and Technology, 2022, 230: 109691.
[5]. Zengfei Liu, Jingran Ge*, Chunwang He, Chen Liu, Binbin Zhang, Kai Liu, Jun Liang*. A direct prediction method for 3D woven composites bending properties based on unit-cell finite element model[J]. Composites Science and Technology, 2024, 248: 110474.
[6]. Hao Li, Qirui Jin, Zengfei Liu, Chuang Ma, Jingran Ge*, Yichao Zhu*, Jun Liang. A mapping-based method capturing the mesoscopic morphological characteristics of 3D woven fabric torsion structures[J]. Composites Science and Technology, 2024, 252: 110630.
[7]. Jingran Ge, Zengfei Liu, Xinyu Hu, Xiaodong Liu*, Bingyao Li, Chunwang He, Jun Liang*. A new progressive fatigue damage model for the three-dimensional braided composites subjected to locally-variable-amplitude loading[J]. International Journal of Fatigue, 2024, 184:108313.
[8]. Xiaodong Liu, Chen Liu, Jingran Ge*, Diantang Zhang, Jun Liang*. An artificial intelligence-based and integrated procedure to reconstruct meshes for tomograms of 3D braided composites[J]. Composites Science and Technology, 2024: 110737.